
 1

Hockin J, Lauritsen J

EpiData Association

Denmark

v1.0

CMD – How to write user commands in EpiData Analysis

The CMD command allows users to execute a series of commands in a .PGM file. This
can be very useful when creating reports or when you need to perform the same
operations on a series of variables. CMD allows users to create more complex
programs, using some of the concepts of traditional computer programming. Although
there are few program controls commands (e.g. typical command sequences such as
DO … WHILE … END are not available), CMD is quite flexible.

Syntax

CMD doxyz
 Command
 …
 Command
END

The CMD block (between the CMD command and the following END) may appear
anywhere in a .PGM file. Any EpiData command may be used inside the CMD block,
though not all will make sense. All variables, including GLOBAL and RESULT variables
may be used and you may use @var to insert the current value of var into the
command.

The user command will be executed when the name of the CMD appears in the .PGM
file. To run the user command once, just put it alone on a line:

doxyz

To run the use command on each record, you must use the following:

if TRUE then doxyz

This works because evaluation of the logic IF command occurs for each record.

 2

Examples

1. Rather than use the regular Analysis output from the DESCRIBE command, you
wish to print out two lines that include the variable name, and only the mean, the range
and coefficient of variation. Putting the calculations and TYPE commands into a CMD
block allows you to have only one set of calculations, which is a way to reduce errors
and allows you to change your mind about what you want to print out without having to
repeat the statements required.

* cvcalc command
define zfield __________ global
define zcv ######.##### global
cmd cvcalc
 describe @zfield /q
 zcv = $mean*100.0/$sd
 type “@zfield mean = @$mean Coefficient of variation =
@zcv”
 type “range = (@$min - @$max) ”
end

* display all statistics
define bmi ####.##
bmi = weight*weight/height
describe height weight bmi
* short program to display mean, cv and range for several
variables
zfield = “weight”
cvcalc
zfield = “height”
cvcalc
zfield = “bmi”
cvcalc

2. You wish to print several lines per record with only certain fields, for all records
entered since a certain date. This could be used to set up labels.

* dolabel command
cmd dolabel
 type “@idnum - @name” /h1
 type “@phonenum”
 type ”@sex @dob”
 type ”Weight=@weight, Height=@height, BMI=@bmi”
end
* print labels for recent records
if datentry>”31/12/2006” then dolabel

 3

Advanced programming

A user command may invoke other user commands, including itself (this is called
‘recursion’). This allows some interesting possibilities. Familiarity with simple computer
programming of macros or in any programming language will be an asset. Caution: if
you create a recursive user command, you must have an IF … THEN … ENDIF block to
decide when to stop! The following user command is simply a check that recursion
works.

* test recursive cmd *
set echo=off
define s # global
s=1
test

cmd test
imif s<1000 then
 s = s + 1
 test
 endif
end

type "All done when s=@s"
set echo=on

Limitations

You cannot include the named command on a line with multiple commands:

doxyz ; doxyz
currently will not work.

 4

Example of file manipulation for all files in subfolders.

Assume you wish to add a variable indicating whether time at visit has a value < 5 (visits
before 3rd project year) to all files in a given project. In the project there are 15
participating centres who must supply six data forms, but have several combinations of
up to six of additional files. Therefore it is not an easy task to add the variable manually.

Techniques used here are:

• Read the filenames into an array by use of the “dir” command.

• Execute a user defined command for each individual file found in the array

• In the user specified command pass by a given file indicated by name

• Save the file with new structure in a folder for use in the next phase of the project

*pgm to add a variable to several working folders:
Define workdir ____________ global
Define fn _____________ global
* Set echo = off // when it is working we can set
echo to off
Workdir =”Center 1”
Nextone
Workdir =”Center 2”
Nextone
* Quit // if there are several centres we might want
to quit afterwards
* ..
CMD nextone
 cd @workdir
 mkdir jan2008
 dir "*.rec"
 * repeat command for all files found:
 Loop filename=$FN* do selectrec
END

*..
CMD selectRec
 fn = upper(@filename)
 type “working on : @workdir
 Current file @fn: ” /h3
 cd @workdir
read "@fn" /close
 IMIF ("@fn" <> "ID.REC") tHEN
 var drop x
 gen i x = 0
 if tid > 5 then x = 1
 select x = 1
 sort idtid
 ENDIF
type "writing @fn"
 savedata "jan2008\@fn" /replace
 close
END

