Basis for implementation of SPC Charts and related commands in EpiData Analysis. Authors: Lauritsen J, Nyen B EpiData Association Denmark and Gruk/Kompetancecentret Norway.

v1.2 January 2009. First version v1.0 November. 2008

The scope of this paper is NOT to give an overall introduction to definition of SPC charts (statistical process control charts), but to document the design choices taken when implementing SPC charts in EpiData Analysis. Further lists of example datasets and validation procedures are available on request and will be placed in an appendix at some point. For general information on the EpiData Software project readers are referred to http://www.epidata.dk

An SPC chart can be defined as an x-y graph, where the x represent sequence of measurements and the y value the measurement. Each x value represent a subgroup. In addition to the actual measurements shown as points connected by a line the graph contains control limits, which represent high and low percentiles of a distribution. It is customary to use 3 standard deviations (or sigma) as the upper and lower control limits, but some authors (e.g. Hart et al), suggest to vary this by total number of samples. For non-gaussian distributed data approximations or factors resembling standard deviations are used with the same purpose of finding a limit for separating within "random variaton" values and "outside expected or with sufficiently low probability" values". but always based on the data at hand.

The implementation of SPC related methods comprises the following: run-charts, g-charts and traditional control charts such as icharts (also called Xmr charts), pcharts, ccharts and ucharts, but also pareto charts, which are strictly not SPC charts, but bar charts sorted by categories in descending order of magnitude. For options, command specification and further examples readers are directed to the user manual for SPC¹

Definitions and naming of SPC (statistical process control) methods and charts are unfortunately not uniform and searching in the research literature reveals a number of - sometimes conflicting – definitions, For the first roughly 50 years from earliest development in th 1930'ies by Shewhard and others the area was basicly only used in industrial production with the health sector catching up much later. Initially in the laboratory branches and since the mid 1980'ies increasingly in a number of specialities, usually related to quality improvement. The main difference of SPC methods in health care and industrial settings is the focus on varying denominators (sampling size per subsample) in health care, whereas in industry usually sampling is planned in detail and based on random sampling of a fixed number of units. The varying

¹ Nyen B, Lauritsen J. Brukerveiledning for SPC-modulen i **EpiData Analysi**s. Gruk & EpiData Association, latest ed. See www.gruk.no

exposure volumen (e.g. patient bed days) for a given topic raises issues on needs for standardisation and weighting principles well known in epidemiology or evaluation of public health practice. Other medical practice terms as predictive values for tests well-known from screening of diseases also appear in the medical litterature on SPC, see references later.

Other issues have also been discussed, e.g. whether to designate deviations from random variation as assignable cause or special cause and a debate on the use of "Control" versus more positive phrases, e.g. enhancement or process optimisation. The term Statistical Process Control is maintained in the sense that "Control" refers to the situation or process in question, not to control of the staff in charge of the process.

Relation to statistical distribution

The theoretical basis for choosing a particular type of SPC - chart is the underlying distribution of the empirical measure in question. Table 1 gives an overview of this as used in the current implementation (v2.1.1.158) in EpiData Analysis.

Chart type	Type of data	plot on y-axis	Examples	Data collected for each
	and			subsample/point in time
	distribution			
RunChart	any	y: count		1
Xbar-S	Continous	y1: mean y2:sd	waiting time to	xbar-s > 10 per sampling
Xbar-R	Gauss	y1: mean y2:range	procedure	point
				xbar-r 2-10 per sampling
				point
Pchart	Binary	y: proportion	proportion of all	Counts of characteristic and
	Binomial		patients seen by each	total for each subsample.
			doctor	
Uchart	Count	y: rate pr denominator	rate pf patient falls per	date of outcome,
	Poisson		patient volume	risk volume since last
				outcome
Cchart	Count	y: count	count of falls	Counts based on a poisson
	Poisson			process
Ichart	Count	y1: count	patient count of visits	Counts based on a binary
Ichart – R	Any	y2: moving range		process
Gchart	Rare events	y: time or count units	days since last infection.	date or day number in period
	Geometric	since last occurrence	days since last call of	of outcome for each single
	(left skewed)		acute team	occurrence
pareto	categorical	y1: percent of each	reasons for delay in start	classification of reasons in
		category as a bar	of surgery	categories
		y2: cumulative percent		
		x: categories as bars		

Table 1: Types of charts and connection to theoretical distributions

y1 + y2: Y-axis with double graphs, y1: top y2: bottom. x-axis is sequence unless stated otherwise

The user group expected to use EpiData Software for quality improvement and documentation based on SPC graphs includes a large group of very experienced professionals, but quite inexperienced in research and project management based on quantitative statistical methods.

A simplification of the decision tree for SPC related methods as shown in table 2 can therefore be an advantage ²:

Type of Data	Recording of	Specification of observations per time unit.	Chart name	variables needed
Measurement data	data measurements at each point (subgroup)	varying subgroup, more than one observation in each subgroup	Xbar-S	measurement time
		one observation per subgroup	Ichart	measurement [time]*
Count (atrribute)	Non conformities	Varying denominator	Uchart	count volume [time]*
data	(Errors) are counted	Constant denominator assumed	Cchart	count [time]*
	Proportions	counts and varying total	Pchart	count total [time]*
Rare Occurrences	Each incident recorded	One incident	Gchart	(time at incident) ⁺
Categorical listing of reasons	Survey of reasons recorded	All observations	Pareto Chart	categories [time]*

Table 2: Simplified Overview of analys	is commands for use in Quality improvement and
documentation.	

+: For each occurence of the rare event the date or a sequence number is recorded in the dataset

*: [time] is meant such that if data are just presented as a sequence of samples, then a possible difference in distance btw. two adjacent datapoints is not relevant. In such cases a sequence (1,2,3...n) will be used for the graphing of data.

In addition to the commands mentioned already Xbar-R has been developed and will not be removed, but the chart above will form the basis for dialogs and menu's supportive of the beginners use of SPC related methods. The main area of usage for EpiData Software is the health sector, where the mentioned charts above are found most relevant.

Calculations for the chart types above are defined in the following texts:

² Partially based on recommendations by Carey RG. Improving Healthcare with Control Charts. ASQ Quality Press, Milwaukee, Wisconsin, 2003. ISBN 0-87389-562-2. (page 20)

xbar-s: Hart, Robertsen, Hart & Lee. Application of Variables Control Charts to Risk-adjusted Timeordered Healthcare Data. Q Manage Health Care. 2004: 99-119. Appendix 1. This results in varying mean for the S chart and varying control limits for the X and the s chart.

gchart: Bennyan J. Number-Between g-Type Statistical Quality Control Charts for Monitoring Adverse Events. Health Care Management Science 2001: 4: 305-318. Also see: Walberg, Frøslie, Røislen. Local Hospital Perspective on a Nationwide outbreak of Pseudomonas Aeroginosa in Norway. Infection Control and hospital epidemiology 2008; 29: 635-41.

uchart, cchart, ichart, pchart: Several sources are available, e.g.:

NIST.gov statistical handbook. Wikipedia.org . Oakland J. Statistical Process Control. Winkel P. Carey and Lloyd. Measuring Quality Improvement in Healthcare. appendix 1.

Non-Random variation.

Special versus standard variation is at the essensse of analysis with some cautionary guiding for the user by adding tests for what is termed special causes, assignable (see Oakland) or non-random variation (Hart et al). The main issue here is the relation btw. type-1 error (designating a signal as meaningful when it is a random variation), "true warning" and type-2 error (not finding a non-random variation or special cause). Hart et al discusses this in particular in relation to health data, which are often composed or characterised by variations in sampling, e.g. different patient groups or age groups.

Currently most implementations of control-limits are based on 3 standard deviations (Sigma), but

implementing total sample size varying Sigma limits, so-called t-limits will be applied, see Hart et al.³ and Walberg et al.

- 1) Depending on distribution of the data at hand a rough guide is that 60% to 75% of the observations are within one SIGMA on each side of the central value.
- 2) Depending on the distribution 90% to 98% of the observations are within 2 SIGMA on either side of the central value.
- 3) Depending on the distribution 99% to 100% of the observations are within 3 sigma on either side of the central value.

These figures should be borne in mind when deciding if a given distribution is within the expectation or shows non-random variation. The use of too restrictive criteria results in type 2 errors, whereas too loose criteria leads to type 1 error.

The following tests for special variation/assignable causes have been implemented in the software. Test 1 is universely accepted as the most important test, except for G-charts where some concerns on non-relevance of upper control limit this has been raised by Walberg et al, 2008. Tests are <u>not</u> implemented for pareto charts.

³ Hart, Robertsen, Hart & Lee. Application of Variables Control Charts to Risk-adjusted Time-ordered Healthcare Data. Q Manage Health Care. 2004: 99-119. Appendix 1.

Specification of EpiData Analysis Implementation of SPC and related methods.

Test	description	Special comments
1	Run Charts:	Expected numbers based are based on a
	Total number of runs exceeds expected	standard table. A run is defined as a
	number of runs. Points on median ignored in	sequence of one or more numbers on the
	runs. Points on the centerline are disregarded.	same side of the centerline.
1	Control Charts:	Control Charts: all other charts
	An observation is outside the control limits,	
	at 3 sigma from the centerline.	
2	K or more points in sequence on the same	One sequence of K or more points counts as
	side of centerline (shift in the process).	one. E.g. K+2 in sequence: 1 occurrence.
	Values on center line are excluded from the	
	count.	K default is 8
3	K or more points decreasing or increasing in	One sequence of K or more points counts as
	sequence (Trend). Sequential values of same	one. E.g. K+2 in sequence: 1 occurrence.
	size count as one.	K default is 6
4	K out of K+1 successive points more than 2	One sequence of K+1 or more points counts
	sigma away from the centerline.	as 1. E.g. K+2 in sequence: 1 occurrence.
	The one not fulfilling the rule cannot be the	K default is 2
	first one of the K+1	
5	K out of K+1 successive points more than 2	One sequence of K+1 or more points on
	sigma away from the centerline.	same side of centerline counts as 1. E.g.
	The one not fulfilling the rule cannot be the	K+2 in sequence: 1 occurrence.
	first one of the K+1	K default is 4
	For all charts: Sigma is 3 by default When T-liv	mits are used this will depend on the number

For all charts: Sigma is 3 by default. When T-limits are used this will depend on the number of observations of that subseries.

Gtest: see below, only for G-charts

For certain types of charts and or combinations of options, not all tests are available. E.g. test 2-5 when "/point" was added. This indicates that the individual measurements (subgroups) represent different entities and a sequence makes no sense. E.g. when each point represent one hospital.

Actual command formulation

Based on the comments and clarifications above the following actual commands are available:

Chart name	variables needed	example call	Special options, comments or sample test
Runchart	measurement	runchart lege	/t
Xbar-S	measurement time	xbar bp visit	
		xbar beddays week	
Xbar-R	measurement time /range	xbar bp visit /Range	Notice that the simplified implementation
			suggests to replace this with Xbar-S
Ichart	measurement [time]*	ichart lege	moving range:
		ichart lege tid	/MR
		ichart lege dato	
Uchart	count volume [time]*	uchart falls patients	Multiplier:
		uchart falls patients week	/per=
Cchart	count [time]*	cchart falls	Multiplier
		cchart falls month	/per=
Pchart	count total [time]*	pchart lege total	
		pchart lege total tid	
Gchart	"time at incident"	gchart dato	If weight is given the time value is used
	"time at incident" [/w]*	gchart day /w=count	the number of times given by the count
			(non-negative, but could be 0)
			/NoUL : no upper limit
Pareto Chart	categories [/w]*	pareto cause	/w: weight variable for count of
			observations

Table 3: Specification and comments on the implementation of single commands n

*: Elements in [] are optional . [time]: If [time] is <u>not</u> given the sequence of data is supposed to represent the sampling order.

Formula's used in the calculation (to be completed)

Chart name	variables needed	
Runchart		
Xbar-S		
Xbar-R		
Ichart		
Uchart		
Cchart		
Pchart		
Gchart		
Pareto Chart		

Options

A number of options have been implemented. Of these one /xlabel can be replaced by having the [time] variable as a string variable, whereas if the [time] variable is numerical the values herein will define the x values.

e) will split - insert break in - the chart at that observation (-s).
Value can be date "dd/mm/yyyy" or "mm/dd/yyyy" of same format as the time field.
Freeze control line and center line calculations on the first y points of the sequence
Perform tests 1-3 and mark in the graph
perform one or more of test1-test5 ($x = 1, 2, 3, 4, 5$)
perform one or more of test1-test5 ($x=1,2,3,4,5$), but use the value y as limit according to he test. See default table.
Use sigma limits depending on number of subgroups (see Hart et al). Show actual values in Footnote to table. Default without this option is Sigma=3.
show standard deviation (sigma) lines (1 and 2 sigma)
Add table of counts below graph
Hide documentation table (but mark tests if added in graph)
show negative as well as positive lower control limit values
Variable contains the labels to show at the X-axis.
Show pointer for observations, omit the connecting line. Only test 1 made if /t indicated
Exlude observation with value of x=indicated
Exclude all points with Y-value => to value (here y)
Exclude all observations with Y= zero
Notice: /exv and /exz does not work with Gcharts
Exclude text below X-axis showing no central value information
do not show upper control limit (only with g-chart)

Colouring of lines

The colours are defined by the set command: GRAPH COLOUR SPC With the following default sequence : GRAPH COLOUR SPC=1307946 Sequence: datapoints blue, centerline green, sigma3 red, sigma2 fuchsia, sigma1 aqua, test4 line gul, test5 skyblue,

Symbols

The symbols are predefined and cannot be user specified with options. Use the /edit to change these.

Not implemented yet (or not decided):

show standard deviation (sigma) zones
Apply for g-charts a test of running sequences according to Walberg, Frøslie, Røislen.
Local Hospital Perspective on a Nationwide outbreak of Pseudomonas Aeroginosa in
Norway. Infection Control and hospital epidemiology 2008; 29: 635-41.
Frequency weight by variable in G-charts. Meaning replication of the measurement.
(Not decided if this will be implemented)